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Abstract 

Pace mapping allows accurate localizing of the source 
of cardiac arrhythmia when the arrhythmia is non-
inducible during electrophysiological study. It compares 
the electrocardiographic (ECG) morphology of clinical 
ventricular tachycardia (VT) with the paced one. Often 
intracardiac electrograms (EGMs) from implantable 
cardiac devices are the only source of ECG morphology.  
However, when presented as images by programmer 
devices, EGM can only be assessed for similarity by 
subjective eyeballing. 

This study aimed to develop regression models for 
objectively measuring similarities between images of two 
distinct signals.  

Six regression models based on Siamese neural network 
architecture with two types of custom similarity layers 
were trained on 40,000 pairs of augmented images from 
17,421 digital intracardiac EGMs. 

The best performance showed the model with 
Efficientnet_b0 as the backbone for Manhattan similarity 
(MSE = 0,002, R2 = 0.98) and Resnet18 as the backbone 
for Pearson correlation (MSE = 0,009, R2 = 0.973).  

Regression models based on the Siamese network 
architecture with custom similarity layers provide a 
promising tool for objectively measuring the similarity of 
EGM images acquired from implanted devices. 

 
 

1.  Introduction 

Ventricular tachycardia (VT) and ventricular fibrillation 
(VF) are two heart rhythm disorders that can cause sudden 
cardiac death. The implantable cardioverter defibrillator 
(ICD) is a common therapy for arrhythmias, automatically 
detecting and treating life-threatening heart rhythms. 
Radiofrequency (RF) ablation is another effective therapy 
for reducing arrhythmic events. One technique for 
identifying the origin of VT/VF during catheter ablation is 
pace mapping, which uses controlled electrical stimuli to 
reproduce the 12-lead surface ECG beat morphology 
recorded during VT. However, patients with ICDs don't 
usually have their ECG recorded during out-of-hospital VT 
episodes, so the only electrophysiological information 
available is from intra-cardiac electrograms (EGM) 
recorded by the ICD. The ICD programmer interface 
doesn't allow access to digital EGM, so similarity 

assessment can only be done by eyeballing images of 
EGMs. The purpose of this study is to develop regression 
models to objectively measure similarities between images 
of distinct EGM signals stored in ICD to improve 
arrhythmia mapping precision. 

 
2. Methods 

2.1. Framework of the MatcherNet 
The purpose of MatcherNet is an objective prediction of 

the similarity of two EGMs given in the form of images. 
We applied transfer learning using relatively small pre-
trained CNN of three different types: 1) Resnet18, 2) 
EfficientNet B0, and 3) MobileNet B2. Based on these 
backbones the Siamese neural network was constructed 
using the images of two signals as inputs (224x224). 
Feature extraction was performed by propagating the 
images through the backbones.  These two feature vectors 
(1x64) were forwarded into the similarity layer to predict 
the similarity score by one of the following methods, 
widely used in the clinical electrophysiological mapping 
systems: 1) Pearson correlation coefficient Î[-1; 1] and 2) 
Manhattan similarity score Î[0; 1] (the formulas are 
represented in Figure C, D).  

 
2.2. Dataset and pre-processing 
   For the supervised learning, we created training and 
validation datasets using 17400 digital intracardiac EGMs 
exported from the electrophysiological station and plotted 
as grayscale images. The pairs of images were randomly 
assigned to each other pairwise, and the similarity scores 
were calculated using digital signals corresponding to them 
and further utilized as labels. The training (90%) and 
validation (10%) datasets consisted of the 40000 pairs with 
a uniform distribution of similarity scores. The images 
were augmented randomly with respect to negative 
inversion, ECG paper, marks, background opacity, 
rotation, and smoothing (Figure 1A). 
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2.3. Experiment process 
We constructed six regression models based on 

MatcherNet architecture, using Resnet18, Efficientnet_b0, 
and MobileNet_V2 as backbones and two types of custom 
similarity layers were used: Pearson correlation coefficient 
and Manhattan similarity. The training was performed in 
100 epochs with a learning rate of 0.001 and batch size of 
64.  
 
2.4. Model evaluation 
   Using the same method as for the training dataset, we 
created the test dataset consisting of 1000 pairs of images 
and similarity scores as labels, created from another set of 
8000 EGMs. MSE and R2 scores were used as 
performance metrics for the evaluation of the models. 

 
3.Results 

     After the tuning of hyperparameters, convergence was 
achieved in all six models (Figure 2).  The performance 
metrics are presented in Table 1.  
 

Table 1. MatcherNet performance metrics. 
Similarity 
metric/backbone 

MSE R2 

Pearson correlation   
- Resnet18 0.01 0.97 
- Efficientnet_b0 0.09 0.973 
- Mobilenet_v2 0.014 0.957 

Manhattan similarity 0.002 0.98 
- Resnet18 0.002 0.98 
- Efficientnet_b0 0.002 0.972 
- Mobilenet_v2 0.003 0.958 

Performance of six configurations of MatcherNet Siamese 
Network for Pearson correlation and Manhattan similarity 
with 3 different backbones. MSE: mean square error, R2 
value: coefficient of determination. 

 
The best performance showed the model with 
Efficientnet_b0 as the backbone for Manhattan similarity 
(MSE = 0,002, R2 = 0.98) and Resnet18 as the backbone 

 

Figure 1. Siamese neural network "MatcherNet".  
A: The data processing, where two 1D signals are used for similarity calculation and transformed into their 2D images with 
further augmentation.  
B: The architecture of MatcherNet, which takes two 2D EGM images as input into backbones and outputs feature vectors. 
The feature vectors are then processed in the similarity layer, which produces a similarity score as the final output. The 
initial similarity calculated with 1D signals is used as a label for backpropagation during training.  
C and D: Examples of similarity prediction between pairs of intracardiac electrogram (EGM) images using Pearson 
coefficient (C) or Manhattan similarity (D). The pairs of EGM images are represented by 2D images generated from their 
corresponding 1D signals. The predicted similarity score between each pair is shown at the top, and labels are calculated 
using digital signals at the bottom of each pair of images as numerical values. 
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for Pearson correlation (MSE = 0,009, R2 = 0.973). All 
models showed better prediction accuracy for Manhattan 
similarity (MSEmean=0.002) as compared to Pearson 
correlation (MSEmean=0.011). 
 

 
Figure 2. Loss function and R2 score for the MatcherNet 
based on ResNet18 backbone.  
 
 
4. Discussion 

EGMs stored in the ICD devices in patients 
experiencing life-threatening VT may play an important 
role in the identification of the origin of heart rhythm 
disorder[1]–[5]. They are especially helpful in cases when 
clinical tachycardia is not inducible during the 
electrophysiological study. In such situations, pace 
mapping could be performed by electrical stimulation from 
different sites of the ventricular myocardium, and the 
morphology of stimulated EGM acquired at ICD-electrode 
can be matched to the EGM of the clinical episodes. In 
clinical practice, this approach is limited by the fact that 
digital signals of implanted devices cannot be accessed or 
exported. Rather, their images are displayed on the 
programmer [6][4]. Therefore, the assessment of similarity 

between EGMs has to be performed by eyeballing. The 
objective measurement of similarity between the EGM 
signals during pace mapping is of great importance [7], [8], 
[9]. Our study provides a promising tool for objectively 
measuring the similarity of EGM images acquired from 
implanted devices. The developed regression models based 
on the Siamese network architecture with custom 
similarity layers showed high prediction accuracy both for 
Manhattan similarity and Pearson correlation coefficient. 
The best performance was achieved by the model with 
Efficientnet_b0 as the backbone for Manhattan similarity 
and Resnet18 as the backbone for Pearson correlation.  

 
Possible implementation in clinical practice. The 

following clinical case provides some insight how the 
model can support clinical practice:  a patient with 
ischemic cardiomyopathy suffered multiple syncope and 
ICD shocks due to recurrent ventricular fibrillation VF 
episodes triggered by monomorphic premature ventricular 
contraction (Figure 3A). Pace mapping from different sites 
of the left ventricle was performed with an assessment of 
similarity between EGM of clinical VF-trigger retrieved 
from ICD and EGMs acquired from ICD during 
stimulation from mapping catheter. RF ablation was 
successfully conducted in the area with the maximal 
Manhattan similarity score between pacing-induced EGMs 
and clinical EGM-pattern. (Figure 3B). In the follow-up, 
the patient was free from VF episodes. 

 
Overall, the developed regression models based on the 

Siamese neural network architecture with custom 
similarity layers can accurately predict the similarity of 
EGM images. Future studies should explore the benefit of 
these models for clinical applications, such as improving 
the accuracy of arrhythmia mapping in patients with 
implantable cardiac devices. 

 
 

5. Conclusion 

Regression models based on the Siamese network 
architecture with custom similarity layers provide a 
promising tool for objectively measuring the similarity of 
EGM images acquired from implanted devices. The model 
can support pace mapping to find the origin of clinical 
ventricular arrhythmia precisely.  
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Figure 3. Example of clinical implementation of the 

model. A: Clinical episode of ventricular fibrillation 
triggered by ventricular extrasystole (highlighted by the 
red frame). EGM acquired from ICD during trigger activity 
is stored as a template. B: Pace mapping from 34 sites in 
the left ventricle using Manhattan similarity prediction. 
The region with the maximal similarity score was targeted 
for ablation.  
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